
Example: Here is a function that employs the if-else structure to determine if a

score earned by a student is a passing score (60):

Example: Here is a function that utilizes the if structure to return a letter grade based

on a numerical score:

The error, return, and nargin commands

Functions can be made more robust by including code that detects and reports error.

For example, let us say we have a function that returns the value of the function

𝑦(𝑥) =
1

𝑥
 ,Obviously, we should not divide by zero. How can our function test the

value of the input x and report an error if 𝑥 = 0?

The error Command. The error(‘message’) command: Can be used to trap an error

by displaying a message and immediately aborting the function. Here is an

example:

Example: Write Matlab code for the following algebraic expression to be executed

if and only if the denominator is different from zero and the quantity under the

square root is positive or zero.

Solution:

Note the use of parenthesis in the condition part of the if statement. As noted earlier,

their usage is optional. However, the use of parenthesis is generally recommended.

The return Command. Reporting error and aborting a script or a function can also

be implemented using the return command. return causes a return to the invoking

program or to the keyboard. Normally, functions return when the end of the

function is reached. A return command can be used to force an early return. Here is

an example:

The following is the function version of the above script:

The nargin Command. What would happen if the user forgets to input one or more

function arguments? Matlab provides a nargin variable (number of arguments in the

input) which is equal to the number of input arguments provided by the user in a

function call.

The following is a script that sets the default number of terms in a geometric series

sum to 𝑚 = 1000 if the user does not provide a value for 𝑚.

Example: Write a function that computes the factorial of an integer x. Compare

your function to the Matlab built-in function factorial(x).

What happens if x is negative? Would including the following code help? If so,

where do you place it within the function?

if x<0, disp('input must be positive'), return, end

What happens if x is not an integer, say, x = 4.1 in the above function? What is y?

Would including the following code help? What does rem(x,1)return?

if rem(x,1)~= 0

disp('input must be an integer')

return

end

Consider the function series2_mh that was introduced in the previous lecture:

We can rewrite the above function using a for loop to compute the series sum, as

follows:

(Note, we cannot use i (or j) as index in for loop because i and j are used by Matlab

to represent the complex unit (√−1)

The tic and toc commands can be used to compute the execution time of a given set

of instructions. The tic command saves the current time that toc later employs to

display the elapsed time. Here is a speed comparison between two above functions:

(Note: The elapsed time values are machine dependent)

For the above functions and with m=10,000, first function without for loop is about

37% faster than second function (looping)! Your turn: Write the formula that leads

to the 37% value.

Here is the series_while function which rewrites the series_mh function employing

a while loop:

Notice how the index is now incremented inside the loop.

As an option, the condition part of the while loop (also, of the for loop) can be

enclosed inside parentheses:

While (n <= m)

The following is another example of the while loop (a script of four lines entered

directly at the Matlab prompt):

Alternatively, we may type all commands, separated by commas, on a single Matlab

line:

Why is the last x value negative?

Interrupting Loops: The continue and break Commands

A particular iteration of the for and while loops can be skipped if a condition inside

the loop is met. This can be implemented using the continue command.

Let us say we want to compute the square root of the positive-valued elements in a

vector x, and ignore the negative ones. Let x = [1 4 -4 16 -2 9]. Here are two

scripts (one with a for loop and another with a while loop):

A script and its output (with a for loop):

A script and its output (with a while loop):

Note that the script with the for loop is more concise. Also, note how the index n is

incremented in two places inside the while loop. Why?

The break command. The break command inside a loop forces the program to

abort the loop, and continue with the instruction immediately after the loop’s end

command.

In the above code, the index increment statement n=n+1, just before break, is

redundant. Why?

Your turn: Write a function that computes the sum of the factorial of the

components of a vector x. The function should skip negative and non-integer

components of x. Example for input x = [3 -2 5.1 4] the function should return

y=3!+4!=30.

